N. P. Avdeev, G. I. Bumagin,
A. F. Dudov, and R. K. Romanovskii

A description has been given [1] of resonance in an ion-convection pump ICP having a pulsating voltage supply: for a certain relation between the pulsation frequency, speed of the neutral component, and length of the transfer zone (see formula (3) in [1]), there was a marked increase in the pressure difference across the stage. Here we construct a model for this.

1. Model Description. We consider the nonstationary hydraulic approximationt for the EHD equation system for a stage:

$$
\begin{gather*}
\frac{\partial v}{\partial x}=0, \rho \frac{\partial v}{\partial t}=\frac{\varepsilon \varepsilon_{0}}{F} \frac{\partial}{\partial x}\left[F_{i} \frac{E^{2}}{2}\right]-\frac{\partial p}{\partial x}-\xi \frac{\rho v_{*}^{2}}{2 d}, \tag{1.1}\\
\frac{\partial\left(F_{i} E\right)}{\partial x}=\frac{F_{i} q}{\varepsilon \varepsilon_{0}}, \quad F_{i} E=\frac{\partial\left(F_{i} U\right)}{\partial x}, \frac{\partial\left(F_{i} q\right)}{\partial t}+\frac{\partial\left(F_{i} j\right)}{\partial x}=0, j=q v+q b E
\end{gather*}
$$

subject to the boundary conditions

$$
\begin{gather*}
\left.U\right|_{x=0}=0,\left.U\right|_{x=l}=U_{0}(t) \tag{1.2}\\
\left.I\right|_{\dot{x}=0}=I_{0}(t),\left.\frac{\partial E}{\partial t}\right|_{x=0}=0 ; \tag{1.3}\\
U_{0}(t)=A\left|\sin \frac{\omega t}{2}\right|, I_{0}(t)=\left\{\begin{array}{cc}
k_{0} U_{0}\left(U_{0}-U^{*}\right), & U_{0} \geqslant U^{*} \\
0, & U_{0} \leqslant U_{0}^{*}
\end{array}\right. \tag{1.4}
\end{gather*}
$$

Here A and ω are the supply-voltage pulsation amplitude and frequency, ℓ the transport-zone length, F and d the area and diameter of the channel cross section, $F_{i}=F_{i}(x, t)$ the cross section area in the space-charge zone in the stage (Fig. 1), v and p the speed and pressure averaged over the cross section for the neutral component, ρ the density, v_{*} is characteristic velocity, ξ is hydraulic loss coefficient, E, U, q, j, I are the field strength, potential, charge density, conduction-current density, and total current averaged over the cross section F_{i}, ε_{0}, and ε are the electrical constant and the dielectric constant, b is ionic mobility, and U^{*} is corona striking voltage. Empirical formula (1.4) for $I_{0}(t)$ has been discussed in [2, 4], including the calculation of k_{0}. Also, (1.1) incorporates the fact that $\mathrm{F}_{\mathrm{i}}=$ const.

The following assumptions are made.

1. The supply-voltage pulsations do not have time to influence the speed of the neutral component: $\partial v / \partial t \ll 1$, so from the first equation in (1.1) we have

$$
\begin{equation*}
v=\text { const } . \tag{1.5}
\end{equation*}
$$

2. On account of the pulsation, the ions move along the transport zone in batches [1] with a velocity of the order of (1.5). We formalize that assumption and get $q(x, t)$ or, which is equivalent, the electrical relaxation frequency

$$
\begin{equation*}
\beta(x, t)=b q / \varepsilon \varepsilon_{0} \tag{1.6}
\end{equation*}
$$

(see [5]), which is periodic on both arguments with periods

$$
\begin{equation*}
T=2 \pi \omega^{-1}, X=v T \tag{1.7}
\end{equation*}
$$

3. The $\mathrm{F}_{\mathrm{i}}=\mathrm{x}=0$ and $\mathrm{x}=\ell$ are stable:

$$
\begin{equation*}
\left.F_{i}\right|_{x=0}=F_{0} \approx 2 \pi r_{0},\left.F_{i}\right|_{x=l}=F \tag{1.8}
\end{equation*}
$$

\dagger Equation (1.1) may be derived from the EHD equations for an element in the channel and the usual assumptions in hydraulics by analogy with [2, Chap. 1, 3, Sec. 2.2].

Omsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 37-41, January-February, 1990. Original article submitted January 15, 1988; revision submitted September 9, 1988.

Fig. 1

Fig. 2
(r_{0} is the radius of curvature at the corona point). The second equation in (1.8) is obeyed for neutral-component speeds $v \leqslant 10 \mathrm{~m} / \mathrm{sec}$, which are characteristic of real ICP.
4. Outside the space-charge zone, $E \ll 1$, which agrees with the quasi-one-dimensional model of (1.1) used for the stage; see pp. 72 and 142 of [3].
2. Electrical Resonance in an ICP Stage. We introduce into (1.1) the $\hat{E}=F_{i} E$ and similarly $\hat{U}, \hat{q}, \hat{j}$, which are the integrals of the corresponding electrical quantities over the cross section of the channel in accordance with the symbols in Sec. 1 and assumption (1.4), and we then use (1.6) to get

$$
\begin{equation*}
\frac{\partial \widehat{E}}{\partial x}=\frac{1}{\varepsilon \varepsilon_{0}} \stackrel{\grave{q}}{q}, \frac{\partial \widehat{q}}{\partial t}+\frac{\partial \widehat{j}}{\partial x}=0, \widehat{E}=-\frac{\partial \widehat{U}}{\partial x}, \widehat{j}=\widehat{v}+\varepsilon \varepsilon_{0} \rho \widehat{E} . \tag{2.1}
\end{equation*}
$$

By virtue of (1.2) and (1.8)

$$
\begin{equation*}
\left.\widehat{U}\right|_{x=0}=0,\left.\widehat{U}\right|_{x=l}=\widehat{U}_{0}(t)=F U_{0}(t) . \tag{2.2}
\end{equation*}
$$

If the pulsation frequency is large enough ($\omega \gg 1$), $\hat{U}(x, t)$ approximately satisfies

$$
\begin{equation*}
\frac{\partial^{2} \widehat{U}}{\partial t^{2}}-v^{2} \frac{\partial^{2} \widehat{U}}{\partial x^{2}}+\bar{\beta} \frac{\partial \widehat{U}}{\partial t}-v \bar{\beta} \frac{\partial \widehat{U}}{\partial x}=\frac{v}{\varepsilon \varepsilon_{0}} F_{0} \bar{I}_{0}, \tag{2.3}
\end{equation*}
$$

in which $\bar{\beta}$ and \bar{I}_{0} are the means over the periods of (1.7) for (1.4) and (1.6):

$$
\begin{equation*}
\bar{\beta}=\frac{1}{X T} \int_{0}^{x} \int_{0}^{T} \beta(x, t) d x d t, \bar{I}_{0}=\frac{1}{T} \int_{0}^{T} I_{0}(t) d t . \tag{2.4}
\end{equation*}
$$

The first two equations in (2.1) imply

$$
\begin{equation*}
(\partial / \partial x)\left(\varepsilon \varepsilon_{0} \partial \widehat{E} / \partial t+\widehat{j}\right)=0 . \tag{2.5}
\end{equation*}
$$

As the expression in parentheses is $\hat{I}=F_{i} I$, from (1.8), (2.5), and the first boundary condition in (1.3) we have $\varepsilon \varepsilon_{0} \partial \bar{E} / \partial t+\hat{j}=F_{0} I_{0}(t)$, or on the basis of the last and first equations in (2.1)

$$
\begin{equation*}
\frac{\partial \widehat{E}}{\partial t}+v \frac{\partial \widehat{E}}{\partial x}+\beta(x, t) \widehat{E}=\frac{1}{\varepsilon \varepsilon_{0}} I_{0}(t) . \tag{2.6}
\end{equation*}
$$

As β and I_{0} have the (1.7) periods, we apply the averaging principle for hyperbolic equations $[6,7]$ to (2.6) to get that for sufficiently large ω, the solutions to (2.6) are close uniformly in x and t to the solutions to the averaged equations

$$
\begin{equation*}
\frac{\partial \widehat{E}}{\partial t}+v \frac{\partial \widehat{E}}{\partial x}+\bar{\beta} \widehat{E}=\frac{1}{\varepsilon \varepsilon_{0}} F_{0} \bar{I}_{0} \tag{2.7}
\end{equation*}
$$

in which $\bar{\beta}$ and \bar{I}_{0} are the (2.4) constants. We differentiate with respect to t and integrate with respect to x over $[0, \ell]$ successively in (2.7) and use the third equation in (2.1) and the second boundary condition in (1.3) together with the equation following from (2.1) and (2.7)

$$
\frac{\partial \widehat{E}}{\partial t}=v \frac{\partial^{2} \widehat{U}}{\partial t^{2}}-\bar{\beta} \frac{\partial \widehat{U}}{\partial x}+\frac{1}{\varepsilon \varepsilon_{0}} F_{0} \bar{I}_{0},
$$

to get (2.3).

We now consider the (2.2) and (2.3) boundary-value problem. The substitution $\hat{U} \rightarrow u$ in

$$
\begin{equation*}
\widehat{U}=u \exp \left(-\frac{\bar{\beta} x}{v}\right)+\frac{x}{l} \widehat{U}_{0} \tag{2.8}
\end{equation*}
$$

results in the standard form

$$
\begin{equation*}
L u=\frac{\partial^{2} u}{\partial t^{2}}-v^{2} \frac{\partial^{2} u}{\partial x^{2}}+\overline{\boldsymbol{\beta}} \frac{\partial u}{\partial t}+\frac{\bar{\beta}^{2}}{4} u=f(x, t),\left.u\right|_{x=0}=u_{x=l}=0, \tag{2.9}
\end{equation*}
$$

in which

$$
\begin{equation*}
f(x, t)=\exp \left(\frac{\bar{\beta} x}{2 v}\right)\left[-\frac{x}{l}\left(\widehat{U}_{0}^{\prime \prime}+\bar{\beta} \widehat{U}_{0}^{\prime}\right)+\frac{v \bar{\beta}}{l} \widehat{U}_{0}+\frac{\dot{v}}{\varepsilon \varepsilon_{0}} F_{0} \bar{I}_{0}\right] . \tag{2.10}
\end{equation*}
$$

The last term in the square brackets in (2.10) is small by comparison with the others on the basis of (1.4), (1.8), and (2.2) as r_{0} and k_{0} are small [2, 4], and as (2.9) contains the friction $\bar{\beta} \partial u / \partial t$, all the solutions to the homogeneous boundary-value problem $L u=0$, $\left.\mathfrak{u}\right|_{\mathrm{x}=0}=0,\left.\mathrm{u}\right|_{\mathrm{x}=\ell}$ decrease exponentially for $\mathrm{t} \rightarrow+\infty$, and it is thus sufficient to calculate the steady-state solution to (2.9).

We discard the small term ($\left.\mathrm{v} / \varepsilon \varepsilon_{0}\right) \mathrm{F}_{0} \overline{\mathrm{I}}_{0}$ in (2.10) and replace $\hat{\mathrm{U}}_{0}(\mathrm{t})$ by a standard harmonic, after which we represent $f(x, t)$ and the solution to (2.9) for a specified t as series in sines in [$0, ~ \ell$], and then simple calculations analogous with those of [8, p. 136] give

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos \omega t+b_{n} \sin \omega t+\frac{r_{n}}{\omega_{n}^{2}}\right) \sin \frac{\pi n x}{l} \tag{2.11}
\end{equation*}
$$

in which

$$
\begin{gather*}
\omega_{n}=\sqrt{\left(\frac{n v \pi}{l}\right)^{2}+\frac{\bar{\beta}^{2}}{4}} \quad(n=1,2, \ldots) ; \tag{2.12}\\
a_{n}=\frac{c_{n}\left(\omega_{n}^{2}-\omega^{2}\right)-d_{n} \bar{\beta} \omega}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\bar{\beta}^{2} \omega^{2}}, b_{n}=\frac{c_{n} \bar{\beta} \omega+d_{n}\left(\omega_{n}^{2}-\omega^{2}\right)}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\bar{\beta}^{2} \omega^{2}} ; \tag{2.13}\\
c_{n}=-\frac{2 r_{n}}{3}+\frac{\omega}{\beta} d_{n}, r_{n}=\frac{4 A F v \bar{\beta} \overline{1}-\mathrm{e}^{\lambda}(-1)^{n}}{\lambda^{2}+\pi^{2} n^{2}}, \tag{2.14}\\
d_{n}=\frac{8 A F \bar{\beta} \omega_{n}}{3}\left[\frac{\mathrm{e}^{\lambda}(-1)^{n}}{\lambda^{2}+\pi^{2} n^{2}}+\frac{\lambda\left[1-\mathrm{e}^{\lambda}(-1)^{n}\right]}{\left(\lambda^{2}+\pi^{2} n^{2}\right)^{2}}\right], \lambda=\frac{\bar{\beta} l}{2 v} .
\end{gather*}
$$

The (2.11) series converges absolutely and uniformly in $x \in[0, l], t \in(-\infty,+\infty)$. We see from (2.13) that the amplitude of harmonic n in (2.11) is

$$
A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}=\frac{\sqrt{c_{n}^{2}+d_{n}^{2}}}{\sqrt{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\overline{\bar{\beta}}^{2} \omega^{2}}}
$$

so there is a maximum at $\omega_{n}=\omega$. Harmonic n in (2.11) thus resonates at the (2.12) frequency n.

We consider the principal resonance $\omega_{1}=\omega$:

$$
\begin{equation*}
\sqrt{\left(\frac{v \pi}{l}\right)^{2}+\frac{\bar{\beta}^{2}}{4}}=\omega \tag{2.15}
\end{equation*}
$$

In the particular case $\bar{\beta} / \omega \ll 1$, we have $v \pi / \ell=\omega$, which as $\omega=2 \pi f$ coincides with the resonance relation (3) of [1] found by experiment, so (2.15) refines the observed resonance formula of [1] provided that the electrical relaxation frequency of (1.6) is comparable with the supply-voltage pulsation frequency, and then (2.12) gives the higher resonant frequencies.
3. Calculating $\Delta \mathrm{pav}$ and Comparison with Experiment. We integrate the second equation in (1.1) over $[0, \ell]$ and use (1.5) and (1.8) to get

$$
\Delta p=\frac{\varepsilon \varepsilon_{0}}{2 F}\left[F E^{2}(l, t)-F_{0} E^{2}(0, t)\right]-\frac{\xi \rho v^{2} l}{2 d}
$$

$(\Delta p=p(l, t)-p(0, t)) . \quad$ As r_{0} is small, $\mathrm{F}_{0} \ll 1$ in (1.8) and we can put approximately $\Delta \mathrm{p}=$ $\left(\varepsilon \varepsilon_{0} / 2\right) E^{2}(l, t)-\xi \rho v^{2} / / 2 d$, so

$$
\begin{equation*}
\Delta p_{\mathrm{av}}=\left(8 \varepsilon_{0} / 2\right)\left(E^{2}\right)_{\mathrm{av}}-\xi \rho v^{2} l / 2 d \tag{3.1}
\end{equation*}
$$

($\Delta \mathrm{p}_{\mathrm{av}}$ and $\left(\mathrm{E}^{2}\right)_{\text {av }}$ are the average values of $\Delta \mathrm{p}$ and $\mathrm{E}^{2}(\ell, \mathrm{t})$ over the period $\left.[0, \mathrm{~T}]\right)$.
Simple calculations on the basis that $E(\ell, t)=F^{-1} \hat{E}(\ell, t)$ with the third formula in (2.1) and with (2.11) and (3.1) give

$$
\begin{equation*}
\Delta \rho_{\mathrm{av}}(l)=\left(\varepsilon \varepsilon_{0} / 2\right) D(l)-\xi \rho \nu^{2} l / 2 d, \tag{3.2}
\end{equation*}
$$

in which

$$
\begin{gather*}
D=\frac{44 A^{2}}{9 \pi^{2} l^{2}}+\frac{4 A \pi}{3 F l}(A-3 R) \mathrm{e}^{-\lambda}+\frac{\pi^{2}}{F^{2} l^{2}}\left(\frac{A^{2}+B^{2}}{2}+R^{2}\right) \mathrm{e}^{-2 \lambda}, \tag{3.3}\\
A=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}, B=\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}, R=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{r_{n}}{\omega_{n}^{2}},
\end{gather*}
$$

with $a_{n}, b_{n}, r_{n}, \omega_{n}$, λ derived from (2.12)-(2.14). The (3.3) series converge absolutely.
Figure 2 compares calculations on $\Delta \mathrm{p}_{\mathrm{av}}(\ell)$ from (3.2) with experiment for an input pulsation frequency $f=100 \mathrm{~Hz}$ for an organosilicon liquid having $\rho=850 \mathrm{~kg} / \mathrm{m}^{3}$ and $\varepsilon=2.4$ (solid line from theory, dashed line from experiment). We assume $\mathrm{v} \approx 1 \mathrm{~m} / \mathrm{sec}$ (from experiment) and $\xi \ll 1$ (zero flow), with $n=10$ in (3.3). The two curves have been constructed for $\bar{\sigma} \approx 5 \cdot 10^{-9} 1 / \Omega \cdot \mathrm{m}$, so from (1.6) we have $\bar{\beta}=\bar{\sigma} / \varepsilon \varepsilon_{0} \approx 200 \mathrm{~Hz}$.

The qualitative theoretical resonance pattern coincides with the observed one. The relative error in (3.1) in the resonant region in these cases is not more than 20%.

LITERATURE CITED

1. G. I. Bumagin, N. P. Avdeev, A. F. Dudov, and V. A. Borisov, "A study on a stage in an ion-convection pump with the corona supplied with a pulsating voltage," Energetika, No. 11 (1984).
2. A. V. Vatazhin, G. A. Lyubimov, and S. A. Regirer, Magnetohydrodynamic Flows in Channels [in Russian], Nauka, Moscow (1970).
3. I. B. Rubashov and Yu. S. Bortnikov, Electrogas Dynamics [in Russian], Atomizdat, Moscow (1971).
4. N. A. Kaptsov, Electronics [in Russian], Gostekhizdat, Moscow (1956).
5. G. A. Ostroumov, Interactions between Electrical and Hydrodynamic Fields [in Russian], Nauka, Moscow (1979).
6. Yu. A. Mitropol'skii, The Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).
7. E. Sanchez-Palensia, Inhomogeneous Media and Oscillation Theory [Russian translation], Mir, Moscow (1984).
8. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Partial Differential Equations in Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1970).
