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A description has been given [I] of resonance in an ion-convection pump ICP having a 
pulsating voltage supply: for a certain relation between the pulsation frequency, speed of 
the neutral component, and length of the transfer zone (see formula (3) in [I]), there was 
a marked increase in the pressure difference across the stage. Here we construct a model 
for this. 
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EHD equation system for a stage: 

= ~ OtFiE ) Fiq, F~E O(fiU---~), O ( r i q - - - - - ~ ) + - - =  
Oz ee o Ox Ot 02 

Model Description. We consider the nonstationary hydraulic approximation* for the 

O, ] = qv + qbE 

subject to the boundary conditions 

U[~= o = O, U[x= ~ ---- Uo(t); 
aE 

I [:+=o = Io (t), T/- x=o = O; 

Uo(t)= Alsin~l, 4(t)={koUo(Uo'U*), Uo>~U*, 
o, Uo < Uo 

(i.i) 

(1.2) 

(1.3) 

(1.4) 

Here A and m are the supply-voltage pulsation amplitude and frequency, ~ the transport-zone 
length, F and d the area and diameter of the channel cross section, F i = Fi(x, t) the cross 
section area in the space-charge zone in the stage (Fig. I), v and p the speed and pressure 
averaged over the cross section for the neutral component, p the density, v, is character- 
istic velocity, $ is hydraulic loss coefficient, E, U, q, j, I are the field strength, poten- 
tial, charge density, conduction-current density, and total current averaged over the cross 
section Fi, g0, and s are the electrical constant and the dielectric constant, b is ionic 
mobility, and U* is corona striking voltage. Empirical formula (1.4) for 10(t) has been dis- 
cussed in [2, 4], including the calculation of k 0. Also, (i.i) incorporates the fact that 
F i =const. 

The following assumptions are made. 

i. The supply-voltage pulsations do not have time to influence the speed of the neutral 
component: 3v/~t ~ i, so from the first equation in (i.i) we have 

v = c o n s t .  ( 1 . 5 )  

2.  On a c c o u n t  o f  t h e  p u l s a t i o n ,  t h e  i o n s  move a l o n g  t h e  t r a n s p o r t  z o n e  i n  b a t c h e s  [1 ]  
w i t h  a v e l o c i t y  o f  t h e  o r d e r  o f  ( 1 . 5 ) .  We f o r m a l i z e  t h a t  a s s u m p t i o n  and  g e t  q ( x ,  t )  o r ,  
w h i c h  i s  e q u i v a l e n t ,  t h e  e l e c t r i c a l  r e l a x a t i o n  f r e q u e n c y  

~(x, t ) =  bq/se o ( 1 . 6 )  

( s e e  [ 5 ] ) ,  w h i c h  i s  p e r i o d i c  on b o t h  a r g u m e n t s  w i t h  p e r i o d s  

T = 2 n o - 1 ,  X = vT .  ( 1 . 7 )  

3 .  The F i = x = 0 and  x = ~ a r e  s t a b l e :  

F~lx=o = F o ~ 2 n r o ,  Fi lx=t  = F ( 1 . 8 )  

*Equation (i.I) may be derived from the EHD equations for an element in the channel and the 
usual assumptions in hydraulics by analogy with [2, Chap. i, 3, Sec. 2.2]. 
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Fig. 2 

(r 0 is the radius of curvature at the corona point). The second equation in (1.8) is obeyed 
for neutral-component speeds v~ 10 m/sec, which are characteristic of real ICP. 

4. Outside the space-charge zone, E << I, which agrees with the quasi-one-dimensional 
model of (i.i) used for the stage; see pp. 72 and 142 of [3]. 

2. Electrical Resonance in an ICP Stage. We introduce into (i.i) the F = FiE and simi- 

larly U, q, j, which are the integrals of the corresponding electrical quantities over the 
cross section of the channel in accordance with the symbols in Sec. i and assumption (1.4), 
and we then use (1.6) to get 

~-x = 88 o q' ~f + ~ = --  ~ ,  ] = v~ + ee0~E. ( 2 .1 ) 

By v i r t u e  o f  ( 1 . 2 )  and ( 1 . 8 )  

UIx=o---- O, U]x=l ---- ~/o(t)= FUo(t). ( 2 . 2 )  

If the pulsation frequency is large enough (~ >> i), U(x, t) approximately satisfies 

O~r~ ~ O~U . O~ OU v Fo~o ' (2 3) 
�9 or* v ~ + ~ - ~ o x  ~o 

in which ~ and I0 are the means over the periods of (1.7) for (1.4) and (1.6): 

XT T 

= 1 ~=X~.[~(x't) dxdt'Io T~Io(t) dt. (2.4) 
~ 0 0  0 

The first two equations in (2.1) imply 

(alOx)(~oO~,lot + T) = o. (2 .5 )  

As the expression in parentheses is i = Fil, from (1.8), (2.5), and the first boundary con- 
dition in (1.3) we have eSoOE/at ~-~------F0f0(t ) , or on the basis of the last and first equations 
in (2.1) 

0-7 + v~-~x ~ iS(z; t )E (t). ( 2 . 6 )  
880 0 

As $ and I 0 have the (1.7) periods, we apply the averaging principle for hyperbolic equations 
[6, 7] to (2.6) to get that for sufficiently large w, the solutions to (2.6) are close uni- 
formly in x and t to the solutions to the averaged equations 

0N aN - -  

O-T+ v ~ +  ~E = f o ~  ( 2 . 7 )  
~ 0  

in which ~ and I0 are the (2.4) constants. We differentiate with respect to t and integrate 
with respect to x over [0, ~] successively in (2.7) and use the third equation in (2.1) and 
the second boundary condition in (1.3) together with the equation following from (2.1) and 
(2.7) 

oN o2~ - 
__ _ ~ +  ;~-- Fo7o, 4 

- - 0  

to get (2.3). 
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We now consider the (2.2) and (2.3) boundary-value problem. 

= u exp  - -  + T ~0  

results in the standard form 

--2 

Lu = ~-~ Ox 2 - -  ~ +  

in which 

The substitution 0 § u in 

( 2 . 8 )  

( 2 . 9 )  

The last term in the square brackets in (2.10) is small by comparison with the others 
on the basis of (1.4), (1.8), and (2.2) as r 0 and k 0 are small [2, 4], and as (2.9) contains 
the friction ~8u/8t, all the solutions to the homogeneous boundary-value problem Lu = 0, 
Ulx= 0 = 0, Ulx= s decrease exponentially for t § +~, and it is thus sufficient to calculate 
the steady-state solution to (2.9). 

We discard the small term (v/ee0)F010 in (2.10) and replace U0(t) by a standard har- 
monic, after which we represent f(x, t) and the solution to (2.9) for a specified t as series 
in sines in [0, ~], and then simple calculations analogous with those of [8, p. 136] give 

u ( x , t ) =  ancos~ t  + bns in~ t  + s m  -U-,  ( 2 . 1 1 )  
1 

2+ % 
co~ ---- (n  = t ,  2 . . . .  ); 

( + ,  _ +2) _ + ( + , . -  + ' ) .  
, b .  

( 2 . 1 2 )  

( 2 . 1 3 )  

in which 

a n 

2rn + 4AFv~ t - -  e~ (--  1) n 
c ~ = - - - ~ - + K d = ,  r = - -  z Z * + z %  ~ ' 

SAFer% [e~, (__ t)n ~ [_l - -  eX(--  ~n!  1 ~l 

( 2 . 1 4 )  

The (2.11) series converges absolutely and uniformly in x~ [0,1], t~ (--~, +~). We see 
from (2.13) that the amplitude of harmonic n in (2.11) is 

V2 Cn + dn 
A .  = + = 

so there is a maximum at ~n = ~" Harmonic n in (2.11) thus resonates at the (2.12) frequency 
n. 

We consider the principal resonance ~I = m: 

~----: + T = ~" ( 2 . 1 5 )  

In the particular case ~/~ ~ i, we have v~/s = ~, which as ~ = 2~f coincides with the reso- 
nance relation (3) of [I] found by experiment, so (2.15) refines the observed resonance 
formula of [i] provided that the electrical relaxation frequency of (1.6) is comparable with 
the supply-voltage pulsation frequency, and then (2.12) gives the higher resonant frequen- 
cies. 

We integrate the second equation 

~pv2l 
2d 

As r 0 is small, F 0 << i in (1.8) and we can put approximately Ap = 
SO 

3. Calculating Apa v and Comparison with Experiment. 
in (i.I) over [0, s and use (1.5) and (1.8) to get 

8S 0 
Ap = ~ [FE 2 (l, t) - -  Fo Ez (0, t)] - -  - -  

(6p = p(Z, t ) -  p(O, t)). 
(eeo/2)E2(ll t ) - -  ~gv*l/2d, 

37 



APav = (SSo~)(E')av"- ~Pv~l/2d ( 3. i ) 

(APav and (E2)av a r e  t he  ave rage  va l ue s  of  Ap and E2(s t )  over  t he  p e r i o d  [0,  T ] ) .  

Simple c a l c u l a t i o n s  on t he  b a s i s  t h a t  E(~, t )  = F-~E(~, t )  wi th  t he  t h i r d  fo rmula  in 
( 2 . 1 )  and wi th  (2 . 11 )  and ( 3 . 1 )  g ive  

A~v (l) = (eeo/2)D(l)-- ~pv~y2d, ( 3 . 2 )  

in which 

44A 2 4A~(A 3R)e-~ + ~ 

(3.3) 

A = ( - -  t1 ~+la~, B = ( - -  t1 ~+1 bn, R ( " . . ~ ,  
n : l  n = l  n = l "  ~ n  

with  an, bn, rn ,  mn, X d e r i v e d  from ( 2 . 1 2 ) - ( 2 . 1 4 ) .  The ( 3 . 3 )  s e r i e s  converge  a b s o l u t e l y .  

F igu re  2 compares c a l c u l a t i o n s  on APav(s from ( 3 . 2 )  w i th  exper iment  f o r  an inpu t  pu l -  
s a t i o n  f r e q u e n c y  f = 100 Hz f o r  an o r g a n o s i l i c o n  l i q u i d  having p = 850 kg/m 3 and ~ = 2.4 
(solid line from theory, dashed line from experiment). We assume v ~ i m/sec (from experi- 
ment) and $ ~ i (zero flow), with n = i0 in 13.3). The two curves have been constructed 
for 8 = 5"i0 -s i/~-m, so from (1.6) we have ~ = ~/~0 = 200 Hz. 

The qualitative theoretical resonance pattern coincides with the observed one. The 
relative error in (3.1) in the resonant region in these cases is not more than 20%. 
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