MATHEMATICAL MODEL FOR RESONANCE IN AN ION CONVECTION PUMP
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A description has been given [1] of resonance in an ion-convection pump ICP having a
pulsating voltage supply: for a certain relation between the pulsation frequency, speed of
the neutral component, and length of the transfer zone (see formula (3) in [1]), there was
a marked increase in the pressure difference across the stage. Here we construct a model
for this.

1. Model Description. We consider the nonstationary hydraulic approximationt for the
EHD equation system for a stage:
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Here A and w are the supply-voltage pulsation amplitude and frequency, % the transport-zone
length, F and d the area and diameter of the channel cross section, F; = Fy(x, t) the cross
section area in the space-charge zone in the stage (Fig. 1), v and p the speed and pressure
averaged over the cross section for the neutral component, p the density, v, is character-
istic velocity, £ is hydraulic loss coefficient, B, U, q, j, I are the field strength, poten-
tial, charge density, conduction-current density, and total current averaged over the cross
section F;, €4, and € are the electrical constant and the dielectric constant, b is ionic
mobility, and U* is corona striking voltage. Empirical formula (1.4) for I,(t) has been dis-
cussed in [2, 4], including the calculation of k,. Also, (1.1) incorporates the fact that
F{ = const.

The following assumptions are made.

1. The supply-voltage pulsations do not have time to influence the speed of the neutral
component: 3v/3t € 1, so from the first equation in (1.1) we have

v = const. (1.5)

2. On account of the pulsation, the ions move along the transport zone in batches [1]
with a velocity of the order of (1.5). We formalize that assumption and get q(x, t) or,
which is equivalent, the electrical relaxation frequency

B(x, t)= bglee, (1.6)
(see [5]), which is periodic on both arguments with periods
T =210, X = o, (1.7)

3. The F;{ = x = 0 and x = ¢ are stable:
Fily—o= Fy =2 2mr,, Eilx=l=F (1.8)

tEquation (1.1) may be derived from the EHD equations for an element in the channel and the
usual assumptions in hydraulics by analogy with [2, Chap. 1, 3, Sec. 2.2].
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(r, is the radius of curvature at the corona point). The second equation in (1.8) is obeyed
for neutral-component speeds v<{ 10 m/sec, which are characteristic of real ICP.

4. Outside the space-charge zone, E « 1, which agrees with the quasi-one-dimensional
model of (1.1) used for the stage; see pp. 72 and 142 of [3].

2. Electrical Resonance in an ICP Stage. We introduce into (1.1) the E = F4E and simi-
larly 0, &, j, which are the integrals of the corresponding electrical quantities over the
cross section of the channel in accordance with the symbols in Sec. 1 and assumption (1.4),
and we then use (1.6) to get
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By virtue of (1.2) and (1.8)

Olamo= 0, Ulsmy = Ualt)= FU(2). (2.2)
If the pulsation frequency is large enough (w » 1), U(x, t) approximately satisfies
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in which B and I, are the means over the periods of (1.7) for (1.4) and (1.6):
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The first two equations in (2.1) imply
(8/02)(ee,0E /0t +7) = 0. (2.5)
As the expression in parentheses is I =7FiI, from (1.8), (2.5), and the first boundary con-
dition in (1.3) we have a%aﬁﬁat{—f‘==ﬁbLKﬂ , or on the basis of the last and first equations
in (2.1)
oF oF - s d
—5;+v6—z+ﬁ(x,t)E=gg;Io(t). (2.6)

As B and I, have the (1.7) periods, we apply the averaging principle for hyperbolic equations
[6, 71 to (2.6) to get that for sufficiently large w, the solutions to (2.6) are close uni-
formly in x and t to the solutions to the averaged equations

9B . OE  mm_ A o3

o+ +BE = R, (2.7)
in which B and io are the (2.4) constants. We differentiate with respect to t and integrate
with respect to x over [0, %] successively in (2.7) and use the third equation in (2.1) and
the second boundary condition in (1.3) together with the equation following from (2.1) and
(2.7)
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to get (2.3).
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We now consider the (2.2) and (2.3) boundary-value problem. The substitution U+ u in

ﬁ—uexp(——ﬁ—x)+ v, (2.8)
results in the standard form
Lu=§%‘—vzzix ﬁ-z— BZu=}‘(.7r:,t‘),u[,c=',=u,,c=,.=0,, (2.9)
in which
(xt)—exp(ﬁx)[——(Uo+ﬁUo)+ To+ - FI.,]. (2.10)

The last term in the square brackets in (2.10) is small by comparison with the others
on the basis of (1.4), (1.8), and (2.2) as r, and k, are small [2, 4], and as (2.9) contains
the friction Bdu/dt, all the solutions to the homogeneous boundary-value problem Lu = 0,
Uly=p = 0, u|g=g decrease exponentially for t > +», and it is thus sufficient to calculate
the steady-state solution to (2.9).

We discard the small term (v/eey)F,I, in (2.10) and replace U,(t) by a standard har-
monic, after which we represent f(x, t) and the solution to (2.9) for a specified t as series
in sines in [0, 2], and then simple calculations analogous with those of [8, p. 136] give
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The (2.11) series converges absolutely and uniformly in z & [0, 1], t & (=, +). Ve see
from (2.13) that the amplitude of harmonic n in (2.11) is

A=V al + b= VC’H o
V(=) + 5%’

so there is a maximum at w, = w. Harmonic n in (2.11) thus resonates at the (2.12) frequency
n.

We consider the principal resonance w; = w:

‘/(_l) +622—‘° (2.15)

In the particular case é/w €« 1, we have vin/% = w, which as w = 27f coincides with the reso-
nance relation (3) of [1] found by experiment, so (2.15) refines the observed resonance
formula of [1] provided that the electrical relaxation frequency of (1.6) is comparable with

the supply-voltage pulsation frequency, and then (2.12) gives the higher resonant frequen-
cies,

3. Calculating Apav and Comparison with Experiment. We integrate the second equation
in (1.1) over [0, &] and use (1.5) and (1.8) to get

Ap = U [FE(1,1) — FoE* (0, t)]_M

(Ap = p(l, ©)— p(0, t)). As r, is small, F, €« 1 in (1.8) and we can put approximately Ap =
(ee/2)EX(1, 1)— EpvAl/2d, SO
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Apay= (e84/2)(E?) o~ Epv?l/2d (3.1)
(Apgy and (E?),y are the average values of Ap and E?(%, t) over the period [0, TI).

Simple calculations on the basis that E(%, t) = F-'E(%, t) with the third formula in
(2.1) and with (2.11) and (3.1) give

Apy (1) = (ee/2)D()— Eovlf2d, (3.2)
in which
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with ay, by, rp, wy, A derived from (2.12)-(2.14). The (3.3) series converge absolutely.

Figure 2 compares calculations on Apyy(2) from (3.2) with experiment for an input pul-
sation frequency f = 100 Hz for an organosilicon liquid having p = 850 kg/m® and € = 2.4
(solid line from theory, dashed line from experiment). We assume v ® 1 m/sec (from experi-
ment) and § € 1 (zero flow), with n = 10 in (3.3). The two curves have been constructed
for 5 » 5°107% 1/Q+m, so from (1.6) we have B = d/eg, = 200 Hz.

The qualitative theoretical resonance pattern coincides with the observed one. The
relative error in (3.1) in the resonant region in these cases is not more than 20%.
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